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NUMERICAL SOLUTION OF HYPERBOLIC EQUATIONS AND 
SYSTEMS WITH TWO INDEPENDENT VARIABLES BY 

A METHOD OF THE RUNGE-KUTTA TYPE, 1 

by 

Nguyen Kong Tuy 

Discussed is the application of two-iteration Runge-Kutta algorithms 
i n  the solution of the Cauchy problem for hyperbolic equations and systems with 
two independent variables. 

The question of the application of Runge-Kutta type methods to the 
numerical solution of partial differential equations has been considered by 
several authors [ 1-3 1. 

In the present article, use is being made of two-iteration Runge-Kutta 
algorithms in the solution of the Cauchy problem for hyperbolic equations 
and systems with two independent variables. The results for one equation 
u with Cauchy conditions along the line segment x - y 

= const are generalized for the case of a system of such equations and are 
being used for the solution of a nonlinear Monge-Ampere equation. An 
analogous problem with Cauchy conditions along a curve segment will be dis- 
cussed later. 

- = f x, y, u, u , u 
XY ( X Y  ) 

1. Statement of the Problem 

Let u s  consider the equation: 

(u is an unknown function of x and y; p = u * q = u with initial conditions 

given along the segment AB of the straight line x + y = const, in the form: 
X' Y ) 
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uo, pa, qo, f are considered to be continuous and differentiable a sufficient 
number of times. 

Let us construct in the region ABC of definition of the solution a uniform 
rectangular grid with step h (Figure 1). We will distribute nodes of the grid in 
layers  parallel to the initial line segment AB. In making calculations on the 

k layer,  for simplicity, we will denote the earlier found values u, p, q, in 

the nodes of the ( k  - 1) 

th' 

st 
layer,  a s  well a s  the initial data in the problem (1) , 

(2) Y as uo, PO, q0* 

We will introduce the following designations: f (x, y,  u, p, q) = F (x,  y) , 
F(X1,Yl) = F ( M ) .  

For the elementary triangle MNP of the grid with vertices M (xi, yl) , 
st 

N ( x 2  = x1 + h, y2 = yl - h) on the (k  - 1) 

k 

layer and vertex P ( x 2 ,  yl) on the 
th 

layer (Figure 2) the following relationships are known: 

u ( P )  = uO(x1) + ih po(x)dx + JJF(x,y)dxdy , (3.a) 
XI 

(3.b) 

where the multiple integral in (3. a) is being taken over the region of MNP. 

Let us take as an initial point the point M, corresponding to h = 0. 
Then, using ( 3 )  we can find an expansion in powers of h a t  the point M for the 
increments Agcu = u ( P )  - u ( M ) ,  AZCp = p ( P )  - p ( M ) ,  A:*q = q ( P )  - q(M) 
in the form 

h2 dpo (xi) h3 d2po (xi) h2 
2! dx 31 dX2 2! 

AgCu = hpO(X1) + - + -  +- F ( M )  
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+ o ( ~ 3 )  . h2 a F ( M )  A*q = hF(M) +-  
21 ax (4. c) 

x 2 =  x1 -+ h 

Y 2 =  Y 1  - h 

FIGURE 1 FIGURE 2 

In the present art icle the problem is being set forth of constructing 
Runge-Kutta type algorithms, which give approximate values of the increments 
Au, AP, Aq. 

2 I Formal Algorithms of the Runge-Kutta Type 

th Values of the function F ( x , y )  used in the i 
for the calculation of Au, Ap, Aq, will hereafter be denoted as F 

respectively. Let the values u, p, q a t  the point p ,  obtained after the i 

tion, be u , p , q , and 

iteration ( i  = 1,2) 
F: Fy, i' 1, 

th  itera- 
XI + h 

i i i  
po(x)dx = I (h)  [for the calculation of I (h)  see 

Paragraph 4 1. XI 

At the first iteration we assume that: 

1 
u1 = u0(x1) + I (h)  +-h2FI 2 , 
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We form the elementary increments: 

. (5.e) 

61u = u1 - U0 (XZ) 

9 ( 5 . 4  6 p = p - U0(X,) 

6'q = q1 - UO(X2) 

1 I 

A'u = u1 - uo(xl) 

Alp = pi - po(xl) 

Alq = q1 - qo(xl) 

Increments (5. d) and (7.d) below relate to the point M ,  and increments (5. e) - 
to the point N.  

j j Then, we introduce the intermediate points M2( j = u, q) , N2(  j = u,p) : 

j 4 CJj - j  j p p , u , . . . y 7 j a r e  numerical parameters. 

At the second iteration we assume that 

1 
2 

u2 = uO(x1) + I (h)  +-  h2F, , (7. a)  
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[by F(Mi)]is understood f h; uo(xi) + a! j~ A U; po(xi) + pjA'p; 

qo (xi) + 7' A'q]; analogously 

A2u = u2 - uo(xl) 

A2p = p2 - po(xl) 

A2q = q2 - qo(Xl) 

Finally, as Au, Ap, Aq we take linear combinations: 

1 ,  Au = hlAiu + h2A2u 

AP = PIA*P + p2A2p 

Aq = vlAiq + v2A2q 

hi, pi, v.  are numerical parameters. 
1 

3. Numerical Determination of Runge-Kutta Parameters 

( 7 . 4  

i i i  For A u, A p,  A q the following expansions in powers of h are valid: 

F ( M )  
h2 dpo(xl) h3 d2po(xi) h2 + -  i 

A u  = hpo(xl) + -  - + -  
2! dx 3: dx2 21 

dFA 

M 
(9.b) 
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(d/dh) 

taken at the point M. 

in (9)  and below means that the derivative with respect to h is being 

Taking into account (8) we obtain expansions in powers of h for Au, 
AP, Aq: 

AU = (hi + 1 2 )  ( X i )  + 5: h2 - dp’ (xi) + -  h3 d2po ( x ~ ) ]  
dx  3! dx2 

(10. b) 

The selection of parameters is effected so that the expansions (10) and - 
(4 )  coincide a t  the arbitrary function F ( x , y )  and arbitrary step h. A s  a 
result  of comparison of (10) and (4)  we obtain the following conditions: 

a F ( M )  BF(M)  - 2 - - -  dF^, 
+ k - )  dh M - ax a Y  

For the right sides of (12) through (14) we have: 
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where 

From (15) it follows tha t  

M 
- 

M For the calculation of the left sides of (12 )  through (14) we will find (d/dh) 

for F ( N )  , F (Mi), F (Ni) : 

so that on the basis of (15) we have 

a f  a f  a f  a f  dpo a f  dqo - - + - (PO - q 0 )  + - - + - - 
ax ay au ap dx aq  dx 

Furthermore, from ( 9 )  it follows that  

0 
= po(xl) , (s) = '*+ f ( M )  , 

M M 
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and from comparison of Sb, S'p, S'q with A'u, Alp, Alq we obtain: 

From (6. a) , by using ( 18) , we have 

Analogously, from (6.b) ,  where x2  = XI -I- h, y2 = y1 - h, by using (19) 
have 

we 

Let us re turn  to the expression (12). The right side of this equality is 
given in (16).  

- 

By using (5 . a ) ,  (7 . a ) ,  (17) ,  (20) ,  and (21) ,  its left side can be 
expressed in the following form: 
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H e r e  all  values are given a t  the point M and, for simplicity, all indices j = u 
are omitted. Assume: 

1 ) O  

2 ) l  

3 ) l  

2 ’2  

(Such a choice of a, 5 is dictated by the form of the region M N P ;  with this 

choice the corresponding projections of points M2 and N2 in the plane xy 
coincide. ) 

U U 

w1 71 w2 7 

1 1 0  

0 0 1  

1 1  o - -  
2 3  

1 1 1 1  
2 2 2  
- - -  

Taking into account (11) , (23) and equating (22)  to the right side of (16) 
we obtain the following system of equations for the parameters a t  Au: 

hi 

1 2  
3 3  

1 
h2p = h2y = - 3 . 

A2 I 

1 2 1  
3 3 2  
- - -  

- - -  

2 
0 1 -  

3 

1 1 5  
2 2 6  

For example, the parameters from Table I will constitute solutions of the 
system (24) .  

- -  
P a  

- -  

0 -  

-(A) 

-(+) 
3 3  

1 
2 

2 

: 

TABLE I 

Location of ProjectionE 

Plane xy 
I I 

1 ? M 

Y 

N 
2 2  
3 3  
- -  
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Analogously, at Ap and Aq we obtain for the parameters: 

ap,orq -P q -P cl 
P19 v1 P2Y v2 P P 0- YP 

1 1 
2 2 

0 1 1 

- - 0 1 0 

1 1 
2 2 

- - 

Equations (75) and (26)  can be satisfied upon selection of parameters,  
for example, from variants in Table 11. 

-P cy EP,pq Y YY 

1 1 
2 2 

1 1 

- - 

TABLE I1 

The factual scheme of calculations according to proposed algorithms has 
the form: 

6'u = A'u + uo(xl) - uo(x2) , 

(28.a) Alp = 6'p + p0(x2) - po(xl) , 

6'q = A'q + qo(xi) - qo(x2) ; 

1 
Alu = I (h)  + h2Fi , 

6'p = hF; , 

A'q = h F 1  ; 
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(28. c) 

~ 

1 
2 

A2u = I(h) + -h2F2 , 

62p = hF; , 

A2q = hF, . 
. .  

If we adopt the first variants of Tables I and 11, then at each step we will 

have to calculate ordy four values of f: f (M) , f (N)  , f (My) = f (My), f 6.f) , 
4. Investigation of the Stability of the Method 

We find 1 po(x)dx = I (h)  according to Simpson‘s formula 
X i  

where Q is the midpoint of the segment MN. We calculate the unknown pa (Q) 
with the aid of Bessel’s interpolation polynomial or ,  i f  need be, with Newton‘s 
polynomial. Whereupon, if the values of po(x) in the nodes of the given layer 
a r e  found with an e r r o r  q ,  and i f  we neglect the remainder of order O(h5) in 
Simpson’s formula, then the irremovable e r ror  in the calculation of I (h)  will be 

- 

- approximately hq. 

th 
Relationships (27) on the k layer will have the following form: 

where the indices k relate to the point P of the triangle MNP, indices k - 1 in 
(29.a) , (29.c) relate to the point M ,  and in (39.b) relate to the point N.  

Along with (39) we write: 

$ = u k - l  + h l A 1 ~  - + h2A2u* + rl , (30. a) k -  

11 



L$ - 1, A2u" - 1, d p z  are elementary increments Here, Ai 

calculated with respect to (28. a) through (28. c)  , in which the approximate 
values u, p, q are replaced by the exact values u*,p* ,q*; rl, r2, r3 are the local 
e r r o r s  of the method which in our case are of orders  O(h4) , O(h3) , O(h3) 
[equation (10) 1 ,  

1, ..., A2% - - 1  

We denote the e r r o r s  as follows: 

Subtracting (29 )  from (30)  and using designations (31) we obtain: 

( 3 2 )  - 

Let f (x, y, u ,  p, q) satisfy a Lipschitz condition with respect to u, p, q,  with 
constant K ,  and let 

On the strength of (28.a) we have 

(33) 
IS h U .  

1 
+-  h2U , k - 1' h'k - 1  2 

I A1u* - Alu k - 1  

IS1Pk - 1  - 'Ipk - 1 I 5 hU , lA1q* k - 1  - A1qk - 1 

Furthermore, from ( 3 3 )  and (28.b) it follows that: 
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Taking into account ( 6. a) and (6 .  b) we have: 

+- h2U If(!!*) - f($)I 5 V = K [ t k  - 1 + h'k - 1 2 

1 
If(.!*) - f@)l 5 W = K [(3% - + hqk - +- h2U) 

+ ( l l k - l  + hU)] . 

From the preceding and from the equality (28.6) we obtain: 

Using (33) and (34) we write (32) in  the form: 

e andr ' ,  r2, r3 k' 'k' k We denote vectors with components E 

correspondingly by X and r (r - {O(h4) ,  O(h3),  O(h3)}),  and we assume that 

they a r e  accurately given on the zero Payer of uo, po, qo. On the basis of (35) 
we have 

k 
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X k 5 AX k - l + r y  k = 1 ,2 ,  . . . y [ ~ ]  . 
Diagonal elements of matrices of A a r e  

1 + cihz + ... , 1 + czh + ... , 1 + c,h + .. , , 
where c l ,  c z ,  c3 a r e  constants not depending on h; the dots designate certain 
addends of higher powers in h; non-diagonal elements of A a r e  values of the 
order not higher than O( h) . 

Thus, a t  usual norms of vectors and matrices the distribution coefficient 
of e r r o r s  a t  each step does not exceed 1 + O(h)  ; hence ensues the stability of 
the method in the sense of [ 41. 

5” Some Generalizations of the Method 

Let there be a system of n equations 

with initial conditions: 

uo = U 0 ( X )  , po = pO(x) qo = qO(x) , (37) 

given along the segment AB of the straight line x + y = const, where u is 
n-dimensional vector function of x, y; p = ux; q = u 

Paragraphs 2 and 3 remains valid for the problem (36) and (37) with the 
difference that all functions and increments in algorithms (27) , (28) are 

i i i i - i - i  j 
vectorial-values depending on the scalar step h; A.,p v o! ,/3 ,y ,aC ,e yy- ,p 
- j  j - j  
p u a r e  scalar coefficients. The proof is analogous to that carr ied out in 
Paragraphs 2 and 3 ;  there remain in force conditions ( 11) , (24 through (26) 
and the results of Tables I and 11. 

All that was stated i n  
Y’ 

1 i’ i’ 

Let us apply the stated method to the solution of the Cauchy problem for 
nonlinear equations of the hyperbolic type with two independent variables by 
reducing such equations to the system (36) with initial conditions (37) . Let u s  
consider for example, the Cauchy problem for the Monge-Ampere equation 

a r  + 2bs + c t  + g ( r t  - s2) + f = 0 , (g  f 0) Y (38) 

14 



- t = u - u is an unknown function of x,  y; a,  b, e ,  g, f 
= "XY' YY' 

where r = u 

are given functions of x,  y, u, p, q, while p = u and q = u 

initial conditions are given along the segment A'B' of a noncharacteristic 
curve I? in the form of uo = uo (x) , po = po(x) , qo = qo (x) . 

Assume that 
X Y' 

It is known [5] that in the hyperbolic case the equation (38) is equivalent 
to the system 

- 

where a ,  ,E are parameters of characteristic families; (PI,  q 2  are roots of the 
characteristic equation q 2  - 2bq + ac - gf = 0,  whereas q 1  corresponds to 
a family a ,  and cp to a family e. 

We will differentiate the first three equations of the system (39) in 
accordance with Levi and Friedrichs, with respect to p ,  and the remainder of 
them - with respect to a ,  and we will solve the system thus obtained in terms 
of the second derivatives. As  a result  we will obtain a system composed of 
five equations: 

where f .  ( j  = 1 f 5) are known functions of x,  y,  u, p, q, x , ya,  u , pa, J a a 
qa, xp7 Yp) Up' Pp' qp .  

We will select the transformation (x,y)  - ( a , p )  so that the segment 
A'B' of the initial curve is transformed into the segment AB of the straight 
line 01 + p = const. Along AB we know xo, yo, uo, pa, qo and we can uniquely 

15 



. (Details of the stated facts determine xo 

have been given previously [ 6, 71 ) . Thus, the Cauchy problem for (38) was 
reduced to the problem (36) ,  (37) ; hence follows its solvability by means of 
the proposed algorithms. 

q; 
, uo , pk ,  qk, xi, y;, ..., 

01) CY. 
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